Immersed surfaces in Lie algebras associated to primitive harmonic maps

R. Pacheco

Departamento de Matemática, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama
6201-001 Covilhã - Portugal
e-mail: rpacheco@ubi.pt

Abstract

Sym and Bobenko gave a construction to recover a constant mean curvature surface in 3-dimensional euclidean space from the one-parameter family of harmonic maps associated to its Gauss map into the sphere. More recently, Eschenburg and Quast generalized this construction by replacing the sphere by a Kähler symmetric space of compact type. In this paper we shall take the generalization of Eschenburg and Quast a step further: our target space is now a generalized flag manifold \(N = G/K \) and we consider immersions of \(M \) in the Lie algebra \(\mathfrak{g} \) of \(G \) associated to primitive harmonic maps.

Keywords: Primitive harmonic maps, generalized flag manifolds, immersed surfaces.

Mathematics Subject Classification 2000: 58E20, 53C43, 53C35.

1 Introduction

It is well known that any non-conformal harmonic map \(\varphi \) from a simply-connected Riemann surface \(M \) into the round two-sphere \(S^2 \) is the Gauss map of a constant Gauss curvature surface, \(F : M \to \mathbb{R}^3 \), and of two parallel constant mean curvature surfaces, \(f_\pm = F \pm \varphi : M \to \mathbb{R}^3 \) (see [8] for details). Harmonic maps from a simply-connected Riemann surface into a symmetric space always come in one-parameter families and, by using a famous formulae of Sym and Bobenko [2, 11], it is possible to construct from the associated family of \(\varphi \) the three surfaces \(F, f_+, \) and \(f_- \).

Eschenburg and Quast [7] generalized this construction: they replaced the two-sphere \(S^2 \) by an arbitrary Kähler symmetric space \(N = G/K \) of compact type; they used the standard embedding to identify \(N \) with a certain adjoint orbit in the Lie algebra \(\mathfrak{g} \) of \(G \); by applying a natural generalization of Sym-Bobenko’s formulae to the associated family of an harmonic map \(\varphi : M \to N \), they obtained immersions \(F, f_+ \) and \(f_- \) of \(M \) in \(\mathfrak{g} \) and studied some of their properties. In this case, the harmonic map \(\varphi \) is not the usual Grassmannian-valued Gauss map but just a distinguished normal vector field of \(F \) and \(f_\pm \).

In the present paper we shall take the generalization of Eschenburg and Quast a step further: our target space \(N = G/K \) is now a generalized flag manifold, hence we can also
identify N with a certain adjoint orbit in \mathfrak{g} [3], and we consider immersions associated to primitive harmonic maps - recall that such maps also come in one-parameter families [3]. We prove that most of the properties of $f_±$ studied by Eschenburg and Quast still hold in this more general setting. Moreover, we will see that some of the geometry of the classical S^2 target case survives in this general setting with respect to the distinguished normal direction defined by φ: f_+ and f_- have constant mean curvature along φ, and, if N is a Kähler symmetric space and $d\varphi(TM)$ is stable under the complex structure J of N, F has constant Gauss curvature along φ.

2 Generalized Flag Manifolds

We start by recalling from [5] some facts concerning generalized flag manifolds. Let G be a compact connected semisimple matrix Lie group with Lie algebra \mathfrak{g}. A parabolic subalgebra $\mathfrak{p} \subset \mathfrak{g}$ induces on \mathfrak{g} a structure of graded algebra:

$$\mathfrak{g}^C = \sum_{r=-k+1}^{k-1} \mathfrak{g}_r, \quad [\mathfrak{g}_r, \mathfrak{g}_s] \subset \mathfrak{g}_{r+s},$$

(1)

with $\mathfrak{g}_- = \mathfrak{g}_{-r}$. Since \mathfrak{g} is semisimple (and so it has trivial center and every derivation is an inner derivation), there exists a unique $\xi \in \mathfrak{g}$ with $\text{ad}_\mathfrak{g} \xi = i r \mathfrak{g}_r$ for all $r \in \{-k+1, \ldots, k-1\}$, the canonical element of \mathfrak{p}. Here and henceforth we denote $i = \sqrt{-1}$.

Let $P \subset G$ be the stabilizer of \mathfrak{p} in the adjoint representation. This is a parabolic subgroup and the homogeneous space G/\mathfrak{g} is a generalized flag manifold. Since G is compact, G acts transitively on G/\mathfrak{g} so that the generalized flag manifold G/\mathfrak{g} is diffeomorphic to the real coset space G/K, where $K = G \cap P$ has Lie algebra $\mathfrak{k} = \mathfrak{p} \cap \mathfrak{g}$.

If W is a representation of K we shall henceforth denote the associated bundle $G \times K W$ by \mathcal{V}. In particular, when $W \subset \mathfrak{g}$ is Ad_K-invariant, the fibre of \mathcal{V} at gK is given by $\mathcal{V}_{gK} = \text{Ad}_g(W)$.

Consider the inner k-automorphism $\tau : \mathfrak{g}^C \to \mathfrak{g}^C$ defined by

$$\tau = \text{Ad} \exp \left(\frac{2\pi i \xi}{k} \right).$$

Denote by ω the primitive k-th root of the unity. The ω^r-eigenspace of τ is given by

$$\mathfrak{g}^r = \mathfrak{g}_r \oplus \mathfrak{g}_{r-k}.$$

In particular, $\mathfrak{g}^0 = \mathfrak{k}^C$. These eigenspaces satisfy

$$\mathfrak{g}^C = \sum_{r=0}^{k-1} \mathfrak{g}^r, \quad [\mathfrak{g}^r, \mathfrak{g}^s] \subset \mathfrak{g}^{r+s} \quad (\text{mod } k).$$

Since ad_ξ takes values in \mathfrak{g} when restricted to \mathfrak{g}, τ restricts to an automorphism of \mathfrak{g}, which we also denote by τ. Hence we have in the generalized flag manifold $N = G/\mathfrak{g} = G/K$ a canonical k-symmetric structure.

Now, in this paper we shall use the G-equivariant map $\Xi : N \to \mathfrak{g}$ defined by $\Xi(gK) = \text{Ad}_g(\xi)$, the so called standard embedding, to identify N with the adjoint orbit of ξ in \mathfrak{g}. In particular, Ξ takes values in the hypersphere of radius (ξ, ξ), where (\cdot, \cdot) denotes the (G-invariant) Killing inner product on \mathfrak{g}. Using Ξ, the tangent bundle TN of $N \subset \mathfrak{g}$ is given by...
Let \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m} \), where
\[
\mathfrak{m}^C = \sum_{i=1}^{k-1} \mathfrak{g}^i,
\]
and the normal bundle \(TN^\perp \) is given by \(\mathfrak{t} \), that is, the orthogonal decomposition \(\mathfrak{g} = TN \oplus TN^\perp \) coincides with the homogenous reductive decomposition \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m} \). We shall be concerned with the metric on \(N \) induced by the Killing inner product on the ambient space \(\mathfrak{g} \) and we can define a \(G \)-invariant complex structure \(J \) on \(N \) by
\[
T^1,\mathbb{R}N = \sum_{i=1}^{k-1} [\mathfrak{g}_i].
\]

Observe that the complex structure \(J \) acting on \([\mathfrak{g}_r] \) is just \(\frac{1}{2}\text{ad}(\Xi) \) and, when \(k = 2 \), \(N \) is a symmetric space and the metric \(\langle \cdot , \cdot \rangle \) is Kähler with respect to \(J \), that is, \(N \) is a Kähler symmetric space.

Let us compute the second fundamental form \(\alpha^N \) of \(N \rightarrow \mathfrak{g} \). First define the following endomorphism of \(TN \)
\[
I = \sum_{i=-k+1}^{-k-1} \frac{1}{r^2} \text{ad}[\Xi]_{[\mathfrak{g}_i]}.
\]
Clearly this equals \(J \) when \(k = 2 \). We have:

Theorem 1. Denote by \(P_{[\mathfrak{t}]} \) the orthogonal projection onto \(\mathfrak{t} \). Then
\[
\beta^N(X,Y) = P_{[\mathfrak{t}]}[IY,X],
\]
for any \(X,Y \in C^\infty(TN) \).

Proof. By definition, \(\alpha^N(X,Y) = P_{[\mathfrak{t}]} \partial_X Y \). Fix a point \(p \in N \) and \(u,v \in T_pN \). There exist \(\hat{X}, \hat{Y} \in [\mathfrak{m}]_p \) such that the vector fields \(X \) and \(Y \) defined by
\[
X_q = \left. \frac{d}{dt} \right|_{t=0} \exp(t\hat{X}) \cdot q = -[q,\hat{X}], \quad Y_q = \left. \frac{d}{dt} \right|_{t=0} \exp(t\hat{Y}) \cdot q = -[q,\hat{Y}],
\]
where \(\cdot \) stands for the adjoint action, satisfy \(u = X_p \) and \(v = Y_q \). Hence \(\partial_X Y = -[X,\hat{Y}] \).

Decompose \(Y \) and \(\hat{Y} \) with respect to \((1): Y = \sum Y^r, \hat{Y} = \sum \hat{Y}^r \). Since \(Y_q = -[q,\hat{Y}] \), we have \(\hat{Y}^r = \frac{i}{2} Y^r \). Hence \(\hat{Y} = IY \), and we conclude that \(\alpha^N(u,v) = P_{[\mathfrak{t}]}[Iv,u] \). \(\square \)

3 Harmonic maps

Let \(G/K \) be a reductive homogeneous space, with base point \(x_0 = eK \) and reductive decomposition \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m} \), equipped with a left \(G \)-invariant metric. Let \(\varphi : \mathbb{C} \rightarrow G/K \) be a smooth map. Take a framing \(\psi : \mathbb{C} \rightarrow G \) of \(\varphi \), that is, we have \(\varphi = \pi \circ \psi \) where \(\pi : G \rightarrow G/K \) is the coset projection. Corresponding to the reductive decomposition \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m} \) there is a decomposition of \(\alpha = \psi^{-1} d\psi, \alpha = \alpha_t + \alpha_m \). It can be shown (see [4]) that \(\varphi \) is harmonic if and only if
\[
d \ast \alpha_m + [\alpha \wedge \ast \alpha_m] = 0
\]
for all local lifts \(\psi \). When \(N = G/K \) is a generalized flag manifold, we have an alternative characterization of harmonic maps:

Theorem 2. Let \(G/K \) be a generalized flag manifold. A smooth map \(\varphi : M \rightarrow G/K \leftarrow \mathfrak{g} \) is harmonic if and only if the 1-form \(\gamma = I \ast d\varphi \) is closed.
Proof. If \(\psi : \mathbb{C} \to G \) is a framing of \(\varphi \), we have \(\varphi = \psi \xi \psi^{-1} \), where \(\xi \) is the canonical element of \(K = P \cap G \). It is easy to check that \(\gamma = \psi \ast \alpha_m \psi^{-1} \). Hence \(d\gamma = \psi(d \ast \alpha_m + [\alpha \ast \alpha_m]) \psi^{-1} \), and we are done.

Remark. Consider the usual identification of \(\mathfrak{so}(3) \) with \((\mathbb{R}^3, \times)\), where \(\times \) denotes the cross product of vectors in \(\mathbb{R}^3 \). When \(N \) is the two-dimensional sphere \(S^2 = SO(3)/SO(2) \), the closeness of \(\gamma \) leads to the well-known condition of harmonicity for maps \(\varphi : \mathbb{C} \to S^2 \):

\[
d(\varphi \times *d\varphi) = 0.
\]

This means that we can integrate in order to obtain \(F : \mathbb{C} \to \mathbb{R}^3 \) with \(dF = \varphi \times *d\varphi \). Clearly, \(F \) is an immersion if and only if \(\varphi \) is an immersion. It happens that \(F \) is an immersion with constant Gauss curvature (see [8], for example). Moreover, away from umbilic points of \(F \), \(f_{\pm} = F \pm \varphi \) are immersions with constant mean curvature. When \(G/K \) is an arbitrary generalized flag manifold and \(\varphi : \mathbb{C} \to G/K \subset \mathfrak{g} \) is harmonic, we can also integrate \(\gamma \) in order to obtain \(F : \mathbb{C} \to \mathfrak{g} \) with \(dF = \gamma \) and consider \(f_{\pm} = F \pm \varphi \). Later, we shall see that, when \(\varphi \) is primitive harmonic, some of the geometry of the \(S^2 \) target case survives in this general setting with respect to a distinguished normal direction.

Recall that harmonic maps into symmetric spaces always come in one-parameter families:

If the reductive decomposition is symmetric, that is, \([\mathfrak{t}, \mathfrak{m}] \subset \mathfrak{m} \) and \([\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{t} \), then it turns out that (4) is equivalent to

\[
[\alpha_m \wedge *\alpha_m] = 0
\]

\[
d \ast \alpha_m + [\alpha \wedge *\alpha_m] = 0
\]

Now, consider the type decomposition \(\alpha_m = \alpha'_m + \alpha''_m \), where \(\alpha'_m \) is a \(\mathbb{C} \)-valued \((1,0)\)-form and \(\alpha''_m \) its complex conjugate. Consider the loop of 1-forms \(\alpha_{\lambda} = \lambda^{-1} \alpha'_m + \alpha_t + \lambda \alpha''_m \). We may view \(\alpha_{\lambda} \) as a \(\Lambda_{\mathfrak{g}} \)-valued 1-form, where

\[
\Lambda_{\mathfrak{g}} = \left\{ \xi : S^1 \to \mathfrak{g} \text{ (smooth)} \mid \tau(\xi(\lambda)) = \xi(-\lambda) \right\} \text{ for all } \lambda \in S^1 \right\}.
\]

(5)

It is easy to check that \(\varphi \) is harmonic if, and only if, \(d + \alpha_{\lambda} \) is a loop of flat connections on the trivial bundle \(\mathbb{C} \times \mathfrak{g} \). Hence, if \(\varphi \) is harmonic, we can define a smooth map \(\Psi : \mathbb{C} \to \Lambda_{\mathfrak{g}}G \), where \(\Lambda_{\mathfrak{g}}G \) is the infinite-dimensional Lie group corresponding to the loop Lie algebra (5),

\[
\Lambda_{\mathfrak{g}}G = \left\{ \gamma : S^1 \to G \text{ (smooth)} \mid \tau(\gamma(\lambda)) = \gamma(-\lambda) \right\} \text{ for all } \lambda \in S^1 \right\},
\]

such that \(\Psi^{-1} d\Psi = \alpha_{\lambda} \). The smooth map \(\Psi \) is called an extended framing (associated to \(\varphi \)). Our harmonic map is recovered from \(\Psi \) via \(\varphi = \pi \circ \Psi_1 \) (here we are using the notation \(\Psi_1(\tau) = \Psi(\tau(1)) \)).

4 Primitive maps

Let \(N = G/K \) be a \(k \)-symmetric space with automorphism \(\tau \) and associate eigenspace decomposition

\[
\mathfrak{g} = \bigoplus_{r=0}^{k-1} \mathfrak{g}^r.
\]

A map \(\varphi : \mathbb{C} \to G/K \) is primitive if and only if \(\alpha'_m \) takes values in \(\mathfrak{g}^1 \).
Remark. If $k > 2$ then any primitive map $\varphi : \mathbb{C} \to N$ is harmonic with respect to all invariant metrics on N for which $[\mathfrak{g}_t]$ is isotropic (cf. [1]). In particular, a primitive map $\varphi : \mathbb{C} \to N$ is harmonic with respect to the metric on N induced by the Killing form of \mathfrak{g}. Of course, when $k = 2$ the primitive condition is vacuous. Following [4], we shall talk of primitive harmonic maps whenever we want to avoid treating the case of k-symmetric spaces with $k = 2$ separately, although the term “primitive” (resp. “harmonic”) is redundant when $k = 2$ (resp. $k > 2$).

Primitive maps, for $k > 2$, always come in one-parameter families:

Since α_m' takes values in \mathfrak{g}^1, α_m'' takes values in \mathfrak{g}^{k-1}, hence $[\alpha_m' \wedge \alpha_m''] = 0$. The projections of the Maurer-Cartan equation $d\alpha + \frac{1}{2}[\alpha \wedge \alpha] = 0$ onto \mathfrak{g}^1, \mathfrak{g}^{k-1} and \mathfrak{g}^0 are therefore given by

\begin{align}
\alpha_m' + [\alpha_t \wedge \alpha_m] &= 0 \\
\alpha_m'' + [\alpha_t \wedge \alpha_m'] &= 0 \\
d\alpha_t + \frac{1}{2}[\alpha_t \wedge \alpha_t] + [\alpha_m' \wedge \alpha_m''] &= 0
\end{align}

Consider the loop of 1-forms $\alpha_{\lambda} = \lambda^{-1} \alpha_m' + \alpha_t + \lambda \alpha_m''$. Let ω be the k-th primitive root of the identity. Again, we may view α_{λ} as a $\Lambda_{\tau} \mathfrak{g}$-valued 1-form, where

$$\Lambda_{\tau} \mathfrak{g} = \{ \xi : S^1 \to \mathfrak{g} \text{ (smooth)} \mid \tau(\xi(\lambda)) = \xi(\omega \lambda) \text{ for all } \lambda \in S^1 \}.$$

Since φ is primitive, it is easy to check that $d + \alpha_{\lambda}$ is a loop of flat connections on the trivial bundle $\mathfrak{g}^C = \mathbb{C} \times \mathfrak{g}^C$. Hence, if φ is harmonic, we can define a smooth map $\Psi : \mathbb{C} \to \Lambda_{\tau} G$, where $\Lambda_{\tau} G$ is the infinite-dimensional Lie group corresponding to the loop Lie algebra (5),

$$\Lambda_{\tau} G = \{ \gamma : S^1 \to G \text{ (smooth)} \mid \tau(\gamma(\lambda)) = \gamma(\omega \lambda) \text{ for all } \lambda \in S^1 \},$$

such that $\Psi^{-1} d\Psi = \alpha_{\lambda}$. Again, the smooth map Ψ is called an extended framing (associated to φ). Our primitive map is recovered from Ψ via $\varphi = \pi \circ \Psi_1$.

Primitive maps are well behaved with respect to homogeneous projections:

Theorem 3. [3] Let $K \subset H$ be closed subgroups of G with G/K k-symmetric, $k > 2$, and M an almost Hermitian manifold with co-closed Kähler form. Suppose that H is τ-stable. If $\varphi : M \to G/K$ is a primitive map, then $p \circ \varphi : M \to G/H$ is harmonic, where $p : G/K \to G/H$ is the homogenous projection.

5 Immersed surfaces in the Lie algebra \mathfrak{g}.

Let $N = G/K$ be a generalized flag manifold with its canonical k-symmetric structure τ, M a simply-connected Riemann surface with local conformal coordinates $z = x + iy$, and $\varphi : M \to N \subset \mathfrak{g}$ a primitive immersion (not necessarily harmonic when $k=2$). Consider the following \mathfrak{g}-valued one-forms:

$$\theta_- = I \ast d\varphi + d\varphi, \quad \theta_+ = (k-1)I \ast d\varphi - d\varphi, \quad \theta_0 = I \ast d\varphi,$$

with I given by (5). Assume that θ_\pm are injective everywhere.

Remark. When $k = 2$, if φ is J-stable, that is, the subbundle $d\varphi(TM)$ of $\varphi^* TN$ is J-stable, then θ_{\pm} are both everywhere injective if and only if φ is everywhere non-conformal.
Definition 1. An immersion \(f : M \to \mathfrak{g} \) is said an \((\pm)\)-immersion along \(\varphi \) if \(df(T^{1,0}M) = \theta_{\pm}(T^{1,0}M) \).

Given an \((\pm)\)-immersion along \(\varphi \), \(f : M \to \mathfrak{g} \), observe that its tangent bundle \(df(TM) \) is a subbundle of \(\varphi^*TN = \varphi^*[\mathfrak{m}] \). Hence, \(\varphi \), which can be viewed as a section of \(\varphi^*TN^\perp = \varphi^*[\mathfrak{t}] \), is also a section of the normal subbundle \(df(TM)^\perp \) of \(f \). We denote by \(\Pi_f \) the second fundamental form of \(f \). Consider also the second fundamental form of \(f \) with respect to \(\varphi \).

\[
\Pi_f^\varphi = \frac{1}{(\xi, \xi)}(\Pi_f, \varphi),
\]

and the first fundamental form of \(f \), \(I_f = (df, df) \). The mean curvature of \(f \) along \(\varphi \) is then given by

\[
\mathcal{H} = \frac{1}{2}\text{trace}(\Pi_f I_f^{-1}).
\]

Theorem 4. a) If \(f_\pm \) is an \((\pm)\)-immersion along \(\varphi \), then \(f_\pm \) is conformal. b) If \(f_\pm \) is an \((\pm)\)-immersion along \(\varphi \) with constant mean curvature \(\mathcal{H} \neq 0 \) along \(\varphi \), then \(\varphi \) is primitive harmonic and

\[
df_\pm = \frac{\theta_\pm}{k\mathcal{H}(\xi, \xi)}. \tag{9}
\]

c) Conversely, if \(\varphi \) is primitive harmonic, \(M \) is simply-connected, and \(\mathcal{H} \neq 0 \), there exist a pair \(f_\pm \) of \((\pm)\)-immersions along \(\varphi \) with constant mean curvature \(\mathcal{H} \) along \(\varphi \) satisfying (9).

Proof. a) Suppose that we have an \((\pm)\)-immersion \(f_\pm : M \to \mathfrak{g} \) along \(\varphi \). This means that there exists a smooth function \(a : M \to \mathbb{C} \) such that, in local coordinates,

\[
f_{\pm z} = a((i(k - 1))\varphi_z - \varphi_z). \tag{10}
\]

Write \(\varphi = \psi \xi \psi^{-1} \), with \(\psi \) a (local) framing of \(\varphi \), and \(\alpha = \psi^{-1}d\psi \). Denote by \(\alpha_m \), the \(\mathfrak{g}_z \)-component of \(\alpha_m \) and set \(A'_1 = \alpha_m(\frac{\partial}{\partial x}) \). Since \(\varphi \) is primitive, we have \(\alpha_m(\frac{\partial}{\partial z}) = A'_1 + A'_{1-k} \) and one can easily check that

\[
f_{\pm z} = kia\psi A'_1 \psi^{-1}.
\]

Since \(\mathfrak{g}_1 \) is isotropic, we conclude from here that \(f_+ \) becomes a conformal immersion.

Similarly, if \(f_- : M \to \mathfrak{g} \) along \(\varphi \) is an \((-)\)-immersion along \(\varphi \), then there exists a smooth function \(b : M \to \mathbb{C} \) such that

\[
f_{-z} = b((1)\varphi_z + \varphi_z), \tag{11}
\]

and we have

\[
f_{-z} = kib\psi A'_{1-k} \psi^{-1}.
\]

Again, since \(\mathfrak{g}_{1-k} \) is isotropic, \(f_- \) becomes a conformal immersion.

b) Let us compute the \((1, 1)\)–component of the second fundamental form of \(f_+ \). Denote by \(\mathbf{T} \) and \(\mathbf{N} \) the tangent bundle \(df_+ (TM) \) and the normal bundle \(df_+ (TM)^\perp \) of \(f_+ \), respectively. Let \(P_N : \mathfrak{g} \to \mathbf{N} \) be the orthogonal projection onto \(\mathbf{N} \). Then, in local coordinates, with \(A'' = \alpha_m(\frac{\partial}{\partial x}) \) and \(B'' = \alpha_x(\frac{\partial}{\partial y}) \), we have

\[
\begin{align*}
\Pi_{f_+}^{(1,1)} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial z} \right) &= P_N f_{++z} = P_N \left\{ kia\psi A'_1 \psi^{-1} \right\} \\
&= kia P_N \left\{ \psi A'_1 \psi^{-1} + \psi[A'' + B'', A'_1] \psi^{-1} \right\} \\
&= kia P_N \left\{ A'', A'_1 \psi^{-1} + kia P_{m|m} \partial_T \psi \{ A'_1 z + [B'', A'_1] \} \psi^{-1} \right\}
\end{align*}
\]

6
In the case of equation (6) onto \(I \) along \(\phi \) by Theorem 2, \(I \) form all forms of the immersions \(b \). This gives again, by \(\phi \), since (\(\cdot,\cdot \)) is \(G \)-invariant. Then, by using the well-known identity \((X,Y), Z = (X,[Y,Z]) \), for all \(X, Y, Z \in g \), we obtain

\[
\mathcal{H} = \frac{H^{(1,1)}_{f^+}}{H_{f^+}} = \frac{kia[A''_{k+1}, A'_{1-k}]}{k^2a^2(A'_{1-k}, A''_{k-1})} = \frac{1}{ak(\xi, \xi)}. \tag{13}
\]

Hence, since \(a \) is real, it follows from (10) and (13) that \(df^+ = \frac{\sigma_{f^+}}{\kappa H(\xi, \xi)} \). In particular, the one form \(f^+ \) is closed, that is, by Theorem 2, \(\varphi \) is harmonic.

Similarly, suppose that we have an \((-)\)-immersion \(f_- : \mathbb{C} \to g \) along \(\varphi \). In this case, the (1,1)-component of the second fundamental form of \(f_- \) is given, in local coordinates, by

\[
H^{(1,1)}_{f^-} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \overline{z}} \right) = kib[A''_{k+1}, A'_{1-k}]\psi^{-1}, \tag{14}
\]

Again, \(b \) must be real and the (1,1)-component of the first fundamental form of \(f_- \) is given by

\[
I_{f^-} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \overline{z}} \right) = k^2b^2(A'_{1-k}, A''_{k-1}).
\]

This gives

\[
\mathcal{H} = \frac{H^{(1,1)}_{f^-}}{I_{f^-}} \left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \overline{z}} \right) = \frac{1}{bk(\xi, \xi)}. \tag{15}
\]

Since \(b \) is real, it follows from (11) and (15) that \(df_- = \frac{\sigma_{f_-}}{\kappa H(\xi, \xi)} \), and consequently, by Theorem 2, \(\varphi \) is harmonic.

c) Conversely, if \(M \) is simply connected, \(\mathcal{H} \neq 0 \), and \(\varphi \) is primitive harmonic, then the one-form \(f^+ d\varphi \) is closed and we can integrate in order to obtain \((\pm)\)-immersions \(f_{\pm} : M \to g \) along \(\varphi \) satisfying \(df_{\pm} = \frac{\sigma_{f_{\pm}}}{\kappa H(\xi, \xi)} \). By (10), (11), (13) and (15), we conclude that both \(f^+ \) and \(f^- \) have constant mean curvature \(\mathcal{H} \) along \(\varphi \).

\[\square\]

Remark. In the case \(k = 2 \), since \(df_{\pm} \) intertwines the complex structure \(J \) of \(N \) with the complex structure \(j \) of \(M \), the immersions \(f_{\pm} \) become \(\text{Kähler immersions} \), that is, \(j \) is an isometric parallel complex structure for the induced metric on \(M \).

The next theorem generalizes part of Theorem 7.3 in [7] and relates the second fundamental forms of the immersions \(f_{\pm} \) with that of \(N, \beta^N \):

Theorem 5. Let \(\varphi : M \to N \) be a primitive harmonic immersion. Consider the associated immersions \(f_{\pm} : M \to g \) satisfying (9). Then:

\[
B^{(1,1)}_{f^+} = -\mathcal{H}(\xi, \xi)\left(\beta^N(df^+, df^+) \right)^{(1,1)}, \quad B^{(1,1)}_{f^-} = \mathcal{H}(\xi, \xi)(k-1)\left(\beta^N(df^-, df^-) \right)^{(1,1)}. \tag{16}
\]
For $k > 2$, $P_{|t|}H_{f_{+}}^{(2,0)} = \left(\varphi^*\beta^N\right)^{(2,0)} = 0$, and, for $k = 2$, we have

$$P_{|t|}H_{f_{+}}^{(2,0)} = \frac{1}{2\mathcal{H}(\xi, \xi)}\left(\varphi^*\beta^N\right)^{(2,0)}, \quad P_{|t|}H_{f_{-}}^{(2,0)} = \frac{1}{2\mathcal{H}(\xi, \xi)}\left(\varphi^*\beta^N\right)^{(2,0)},$$

where $P_{|t|}$ denotes the orthogonal projection onto $[t]$.

Proof. Relations (16) follow directly from (3), (12) and (14). With respect to (17), we have:

$$P_{|t|}H_{f_{+}}^{(2,0)} \left(\frac{\partial}{\partial z} \cdot \frac{\partial}{\partial z}\right) = P_{|t|}\left\{i\frac{\hat{z}}{\mathcal{H}}\psi A_1^\prime \psi^{-1}\right\}_{z},$$

$$= \frac{i}{\mathcal{H}} P_{|t|}\left[\psi A_1^\prime \psi^{-1} + \psi[A' + B', A_1']\psi^{-1}\right] = \frac{i}{\mathcal{H}} P_{|t|}\psi[A_1' - k, A_1']\psi^{-1};$$

on the other hand, from (3) it results that

$$\beta^N(\varphi_x, \varphi_z) = \frac{k_i}{1 - k} P_{|t|}\psi[A_1' - k, A_1']\psi^{-1};$$

combine (18) with (19) and we are done. \qed

Remark. Theorems 4 and 5 admit an immediate generalization to higher dimensions by replacing the Riemann surface by a complex manifold and harmonic maps by primitive pluriharmonic maps. Recall that a smooth map from a complex manifold is primitive pluriharmonic if its restriction to any complex curve is primitive harmonic. Again, given a primitive pluriharmonic map φ from a simply-connected complex manifold M into a generalized flag manifold G/K, we can integrate the one-forms θ_z to obtain immersions f_{+} of M in g, which verify (16) and (17). The restrictions of f_{+} and f_{-} to any complex curve in M have constant mean curvature along φ.

The well-known Hopf’s theorem states that any constant mean curvature immersion of the sphere S^2 in \mathbb{R}^3 is a parametrization of a round sphere. More generally:

Theorem 6. Suppose that M is compact and $d\varphi(T^{1,1}M)$ is I-stable. Then the immersions f_{+} and f_{-} take values in hyperspheres.

Proof. Observe that $d\varphi(T^{1,1}M)$ is I-stable if, and only if, φ_x takes values either in $\varphi^*[g_1]$ or $\varphi^*[g_{1-k}]$. We have

$$f_{+x} = \frac{1}{k\mathcal{H}(\xi, \xi)}(i(k-1)\varphi_x - \varphi_z).$$

If φ_x takes values either in $\varphi^*[g_{1-k}]$, this means that $\frac{\partial f_{+x}}{\partial z} = 0$, that is, f_{+} is constant on the compact M, by the maximum principle. If φ_x takes values in $\varphi^*[g_1]$, we have

$$f_{+x} = - \frac{1}{\mathcal{H}(\xi, \xi)}\varphi_z.$$

Hence $\varphi + \mathcal{H}(\xi, \xi)f_{+}$ is constant. Denote this constant by C. Since

$$\left|f_{+} - \frac{C}{\mathcal{H}(\xi, \xi)}\right| = \frac{|\varphi|}{|\mathcal{H}(\xi, \xi)|} = \frac{1}{|\mathcal{H}|},$$

we conclude that $f_{+} : M \to g$ takes values in the hypersphere centered at $\frac{C}{\mathcal{H}(\xi, \xi)}$ and radius $\frac{1}{|\mathcal{H}|}$. Similarly, one can prove that f_{-} is either constant or take values in a hypersphere. \qed
In the Kähler symmetric case \((J = J)\), \(d\varphi(T^{1,0}M)\) is \(I\)-stable if, and only if, \(\varphi\) is either holomorphic or anti-holomorphic. On the other hand, any harmonic map \(\varphi : S^2 \to S^2\) is either holomorphic or anti-holomorphic. Then, Hopf’s theorem is the particular case \(M, N = S^2\) of Theorem 6.

Now, if \(\varphi : M \to N\) is harmonic and \(M\) is simply connected, the one-form \(I + d\varphi\) is closed and we can integrate on \(M\) in order to obtain an immersion \(F : M \to g\) such that \(dF = I + d\varphi\). The Gauss curvature of \(F\) along \(\varphi\) is given by

\[
K = \det J_F^2 F^{-1}.
\]

When \(N = S^2\), it is well known that \(K\) is constant. More generally, in the Kähler symmetric case we have:

Theorem 7. Let \(G/K\) be a Kähler symmetric space. Suppose that \(\varphi\) is a \(J\)-stable immersion. Then the conformal structure on \(M\) is given by the second fundamental form \(F^\varphi = \frac{1}{|\xi|^2} (\nu_F, \varphi)\) and \(F\) has constant Gauss curvature \(K = \frac{1}{|\xi|^2}\) along \(\varphi\).

Proof. In this case, \(J = I\) and

\[
(\xi, \xi) F^\varphi = \left(\frac{\partial}{\partial z} \frac{\partial}{\partial z} \right) (F_{zz}, \varphi) = - (F_{zz}, \varphi) = - (J \varphi_z, \varphi_z) = 0.
\]

Hence the conformal structure of \(M\) is given by \(F^\varphi\). On the other hand, since \(d\varphi(TM)\) is \(J\)-stable, \(\sin^2(\angle \varphi_z J \varphi_y) = \cos^2(\angle \varphi_z \varphi_y)\), where \(\angle XY\) denotes the angle between \(X\) and \(Y\), and we have

\[
(\xi, \xi)^2 \det F^\varphi = (F_{zz}, \varphi) (F_{yy}, \varphi) = (F_z, \varphi_z) (F_y, \varphi_y) = - (J \varphi_z, \varphi_z) (J \varphi_y, \varphi_y) = (\varphi_z, J \varphi_y)^2
\]

\[
= |\varphi_z|^2 |\varphi_y|^2 \cos^2(\angle \varphi_z J \varphi_y) = |\varphi_z|^2 |\varphi_y|^2 - |\varphi_z|^2 |\varphi_y|^2 \sin^2(\angle \varphi_z J \varphi_y)
\]

\[
= |\varphi_z|^2 |\varphi_y|^2 - (\varphi_z, \varphi_y)^2 \cos^2(\angle \varphi_z \varphi_y) = |\varphi_z|^2 |\varphi_y|^2 - (\varphi_z, \varphi_y)^2 > 0.
\]

Since

\[
\det I_F = |F_z|^2 |F_y|^2 - (F_z, F_y)^2 = |\varphi_z|^2 |\varphi_y|^2 - (\varphi_z, \varphi_y)^2,
\]

we conclude from (20) that

\[
K = \det J_F^2 I_F^{-1} = \frac{1}{(\xi, \xi)^2}.
\]

In the case \(N = S^2\), any smooth map \(\varphi : M \to S^2\) is automatically \(J\)-stable. In higher dimensions, the \(J\)-invariance is a strong restriction:

Theorem 8. Let \(N\) be a Kähler manifold with complex structure \(J\). A \(J\)-stable harmonic map \(\varphi : M \to N\) is either \(\pm\)-holomorphic or non-conformal.

Proof. Suppose that \(\varphi\) is non-constant and conformal: \((\varphi_z, \varphi_z) = 0\). Since \(\varphi\) is \(J\)-stable, we can write \(J \varphi_z = \alpha \varphi_z + \beta \varphi_{\bar{z}}\) for some smooth functions \(\alpha\) and \(\beta\). Hence

\[
0 = (J \varphi_z, \varphi_z) = \beta (\varphi_z, \varphi_{\bar{z}}).
\]

But, by the harmonicity of \(\varphi\), the singularities of \(\varphi_z\) are isolated. Hence \(\beta \equiv 0\), and consequently \(\varphi_z\) is an eigenvector of \(J\), that is, \(\varphi\) is \(\pm\)-holomorphic.

Since all harmonic maps from the sphere \(S^2\) are conformal, we see that:

Corollary 1. Let \(N\) be a Kähler manifold with complex structure \(J\) and \(\varphi : S^2 \to N\) a \(J\)-stable harmonic map. Then \(\varphi\) is \(\pm\)-holomorphic.
6 Sym-Bobenko’s type formulae and twistor projections

Let $N = G/K$ be a generalized flag manifold and $\varphi : M \to N$ a primitive harmonic map. Let $\Psi : M \to \Lambda rG$ be an extended framing associated to φ. We can integrate the one-forms θ_+, θ_- and θ_0 to obtain immersions $f_+, f_-, F : M \to \mathfrak{g}$. When $G = SO(3)$, the surfaces f_{\pm} have constant mean curvature and F has constant Gauss curvature, and Sym [11] and Bobenko [2] gave a formulae to recover them from the extended framing Ψ. More recently, Eschenburg and Quast [7] extended this construction to the Kähler symmetric space co-domain case. For primitive harmonic maps we have:

Theorem 9. Set $\Psi = \psi$. Then

$$F = -i \frac{\partial \Psi}{\partial \lambda} \big|_{\lambda = 1} \psi^{-1} : M \to \mathfrak{g};$$

$$f_+ = -(k - 1)i \frac{\partial \Psi}{\partial \lambda} \big|_{\lambda = 1} \psi^{-1} - \psi \xi \psi^{-1} : M \to \mathfrak{g};$$

$$f_- = -i \frac{\partial \Psi}{\partial \lambda} \big|_{\lambda = 1} \psi^{-1} + \psi \xi \psi^{-1} : M \to \mathfrak{g}.$$

Proof. Since Ψ is an extended framing, we have

$$\Psi^{-1} \Psi = \lambda^{-1}(A'_1 + A'_{1-k}) + B'.$$

Then, by straightforward computation, for F, f_+ and f_- given by (22), one can check that

$$F_+ = i \psi(A'_1 + A'_{1-k}) \psi^{-1} = \theta_0 \left(\frac{\partial}{\partial z} \right);$$

$$f_{+} = i \psi \theta(A'_1 \psi^{-1} = \theta_+ \left(\frac{\partial}{\partial z} \right);$$

$$f_{-} = i \psi \theta(A'_{1-k} \psi^{-1} = \theta_- \left(\frac{\partial}{\partial z} \right);$$

and we are done. \qed

Consider now two generalized flag manifolds G^C/P and G^C/\bar{P} with their canonical $(k+1)$- and $(\bar{k}+1)$-symmetric structures τ and $\bar{\tau}$. Let G/K and G/\bar{K} be the corresponding real cosets. Denote by \mathfrak{p} and $\bar{\mathfrak{p}}$ the lie algebras of P and \bar{P}, respectively. Suppose that $\mathfrak{p} \subset \bar{\mathfrak{p}}$. Then, with obvious notations, $\mathfrak{g}_j \subset \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_j$, for all $j \geq 0$ (see [10], Lemma 4.3). In particular,

$$\mathfrak{g}_0 \subset \mathfrak{g}_0, \quad \mathfrak{g}_1 \subset \mathfrak{g}_0 \oplus \mathfrak{g}_1$$

(24)

Let $p : G/K \to G/\bar{K}$ be the homogeneous projection. From Theorem 3 and (24) it follows that if $\varphi : \mathbb{C} \to G/K$ is a primitive harmonic map then $\tilde{\varphi} = p \circ \varphi : \mathbb{C} \to G/\bar{K}$ is also primitive harmonic. Next we will see how to relate the immersed surfaces associated to φ with those associated to $\tilde{\varphi}$.

Lemma 1. [10] Let \mathfrak{g} be a Lie algebra, $\tau : \mathfrak{g} \to \mathfrak{g}$ an automorphism of order k, and $\sigma : S^1 \to \text{Aut} \, \mathfrak{g}$ a group homomorphism such that $\sigma(\omega) = \tau$, where ω is the primitive k-th root of the unity. Then the map $\Gamma_\tau : \Lambda \mathfrak{g} \to \Lambda \mathfrak{g}_0$ given by $\Gamma_\tau(\gamma)(\lambda) = \sigma(\lambda) \gamma(\lambda^k)$ is an isomorphism.

Starting with the canonical elements ξ and $\bar{\xi}$ of \mathfrak{p} and $\bar{\mathfrak{p}}$, respectively, we can define two loops of automorphisms $\sigma, \bar{\sigma} : S^1 \to \text{Aut} \, \mathfrak{g}$ by

$$\sigma(\lambda = e^{i\theta}) = \text{Ad} \exp(\theta \xi), \quad \bar{\sigma}(\lambda = e^{i\theta}) = \text{Ad} \exp(\theta \bar{\xi}).$$
Note that $\sigma(\omega) = \tau$ and $\tilde{\sigma}(\tilde{\omega}) = \tilde{\tau}$.

Then we have an isomorphism $\Gamma : \Lambda g \to \Lambda \tilde{g}$ defined by

$$\Gamma(\eta(\lambda)) = \tilde{\sigma}(\lambda^{{-k/k}})\eta(\lambda^{{k/k}}).$$

We also denote by $\Gamma : \Lambda_r G \to \Lambda_{\tilde{r}} G$ the corresponding isomorphism between loop Lie groups. On the other hand, it is easy to check that if Ψ is an extended framing associated to φ, then $\tilde{\Psi} = \Gamma(\Psi)$ is an extended solution associated to $\tilde{\varphi}$. Hence to obtain the immersed surfaces \tilde{F}, \tilde{f}_+ and \tilde{f}_- we only have to apply formulas (21), (22) and (23) to $\tilde{\Psi}$. Up to a translation, this gives, for example:

$$\tilde{F} = \frac{k}{k}F + \psi\left(\frac{k}{k}\xi - \xi^1\right)\psi^{-1}.$$

Remark. Primitive pluriharmonic maps also come in one-parameter families [6, 9]. Hence Theorem 9 still holds when we replace M by a higher dimensional complex manifold and φ by a primitive pluriharmonic map.

References

